2 Project Plan

2.1 PrOJECT MANAGEMENT/TRACKING PROCEDURES

We have chosen to use the Agile methodology, as we are working alongside our client rather than
for our client. Most of our project goals are appearing as we meet with our client and come up with
some information for him.

Our group has decided to use Discord, Google Docs, and GitLab to track our progress throughout
the course.

2.2 Task DECOMPOSITION

1. Simulate a judicious transmission system for distance protection studies in PLECS
a. Build model which accurately portrays a real-world transmission system
b. Adjust settings and nature of faults to gain different sets of data for robustness
2. Frame mathematically the design constraints for distance protection to define a reward
function for reinforcement learning
a. Gaining data which features each set of faults that could occur in our transmission
system.
b. Development of exporting data from PLECS to python in some efficient fashion
¢. Open circuit breakers based on numerical analysis of faults that occur.
3. Design and execute a reinforcement learning environment that interfaces with PLECS
a. Development of a neural network which may take a set of data and determine
characteristics of the faults that occur in our transmission system.
b. transporting data from PLECS to python and back to PLECS for controlling of the
system
4. Implement the controller from reinforcement in a real-time simulation environment, i.e., in
the RT box.
a. Learn how to implement the RT-box with our model in order to get a real-world
example of how our system would function.
b. Collect data and adjust our model/ideas to accurately deal with the results coming
from using the RT-box

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

1. Simulation model - Measurement of progress would be if this is complete with all aspects
taken into account.
a. Our model should be able to simulate a fault occurrence at some point in the line
with a decent amount of accuracy (>75%).
b. The model should also be able to detect that a fault has occurred with near perfect
accuracy (>90%).
2. Mathematical model of a reward function - Measurement of progress would be if this is
complete and able to detect a fault.

a. Our mathematical model should be able to detect a fault with 75% accuracy.
3. Script for reinforcement learning - Measurement of progress would be if this is complete
and is able to detect a fault and open the circuit breaker.
a. The script should be accurately determining if a fault is present and decide what to
do in the instance of a fault (>50%).
4. Final proof of concept while using a real-time simulator - Measurement of progress would
be if this is complete and works around 80% of the time correctly.
a. The model and final proof should be able to accurately find that a fault is occurring
and determine what type. This should also be able to de-energize the line and give
a rough estimate of the distance at which the fault occurred. This should be around
>80% accurate.

2.4 PROJECT TIMELINE/SCHEDULE

| Manth 0 | Wonth1 Month2 Monthd Monthd4 Month5 Monthé Month7 Montna
5 Simulate a judicious fransmission
system for distance protection

Adjust settings and nature of faulis
4 to gain different sets of data for
robustness
Frame matnematically the design
= | constraints for distance protection to
: define a reward function for
reinforcement leaming
Gaining data which features each
) set of faults that could occur in our
transmission system

Development of exporting data frem
PLECS to python in some efficient
fashion

Design and execute a reinforcement
8 leaming environment that interfaces
with PLECS

Implement the controller from
1 reinforcement in a real-ime
simulation environment. i.e., in the

2.5 Risks AND Risk MANAGEMENT/MITIGATION

PLECS components don’t run or work as intended which then skews our data and give us incorrect
information

Model developed in PLECS does not interface sufficiently with RT-box and gives erroneous
data/results.

There is some internal issue, or malfunction, that occurs with the RT box that isn’t obvious and

interferes with our real-time simulation.

- For any issue with the RT-box, we shall feed in control cases to get a baseline for how the

RT box is functioning as well as any adjustments that need to be made.

2.6 PERSONNEL EFFORT REQUIREMENTS

Task

Reference/explanation

Estimate (person-hours)

Simulation model

Reference: We have spent
around 3 hours running each
of our faults.

Explanation: This will include
each of the faults, but will
need much more data for our
program.

10-20 hours

Mathematical model of a
reward function

Reference: This is also based
on the time we have spent in
PLECS up to this point.

Explanation: This will include
the execution of the fault
detection, not the data we
collected to find it.

5-10 hours

Script for reinforcement
learning

Reference: This is based on
our overall knowledge of
Python and what it will take to
complete.

Explanation: This will include
the initial simulation model,
and our Al system that will
execute the location of the
fault.

20-30 hours

Final proof of concept while
using a real-time simulator

Reference: We do not have a
current reference because of
where we are in the project
and do not have any prior
knowledge using this.

Explanation: This will include
the final simulation and
testing our fault location
system.

10-20 hours

2.7 OTHER RESOURCE REQUIREMENTS

Other resources that we will need to use for our project will include a RT box that will run our
simulations in real time. We will also need to use Python to run and examine our testing from our
PLECS outputs, which is another resource that we are using.

